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Abstract

With the introduction of end-to-end trainable neural
models, several tasks across the field of computer vision
have seen enormous success, including image classifica-
tion, semantic segmentation, and many more. This paper
explores the application of convolutional neural networks
to the task of semantic segmentation on histological im-
ages from cancer patients, obtained from Stanford Medical
School.

1. Introduction
Semantic segmentation has become an important task in

computer vision over the past several years. With the intro-
duction of AlexNet [1], and since then, many deeper net-
work architectures like VGG [2] and ResNet [3], image
classification has achieved accuracies on par, if not better
than, human performance. Naturally, the next step was an
end-to-end trainable convolutional neural network for se-
mantic segmentation, which was first proposed by Jonathan
Long and Evan Shelhamer at UC Berkeley [4].

This paper aims to apply the work done in the field of
semantic segmentation to a dataset consisting of histologi-
cal images of breast cancer patients in the Stanford Medical
School.

2. Motivation
Before discussing the model and performance itself, it

is useful to motivate finding a solution to the task at hand.
The task at a high level is to segment images into cancerous
sections and not cancerous sections. Given a robust classi-
fier designed to perform this task, there are several useful
applications of this classifier. One good example would be
to try and categorize how different types of cancers behave.
Given an automated way to go from the histological image
to the labeled image, performing a large scale study on the
behaviors and evolution of the cancer itself becomes much
more feasible. Another more tangible example would be to

use this labeled output from our classifier as an input to an-
other system, the goal of which is to predict life expectancy
and/or best treatments for an individual patient. Personal-
ized medicine aims to provide patient specific treatment,
and a robust and accurate classifier for a task like this will
be very useful.

3. Related Work
The primary paper in the field of semantic segmenta-

tion that used end-to-end convolutional neural networks was
that titled ”Fully Convolutional Networks for Semantic Seg-
mentation”, written by Jonathan Long et. al [4]. In the paper
they proposed a network architecture that is trained pixels
to pixels, directly for semantic segmentation.

They adapted and tuned several modern deep networks,
such as AlexNet [1], VGG [2], and GoogLeNet [5], to the
specific task of image segmentation instead of image clas-
sification. With this, they achieved state of the art perfor-
mance on a few datasets used to test image segmentation,
such as PASCAL VOC [6], and NYUDv2. Also discussed
was the relative efficiency with which inference can be com-
pleted. Inference requires just one forward pass through the
convolutional network, which now contains no fully con-
nected layers at the end. This provides quick inference,
which is quite useful for real world tasks that need to be
performed in near real time. Note that the advances in this
paper rely not only on the success of previous networks such
as AlexNet [1] and VGG [2], but also on the recent suc-
cesses of transfer learning, and because of this the ability to
fine tune models that have already been trained successfully.

4. Data
4.1. Dataset

As briefly mentioned above, the dataset contains histo-
logical images from real tumors. The tumors were extracted
and imaged in the Stanford Medical School. The labels
were hand generated by the same group in the Stanford
Medical School as well. Overall, the dataset consists of 158
image/label pairs. The labels themselves are segmented into
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three categories: cancer, stroma, or background. The im-
ages and labels themselves are 1128x720 pixel images. This
somewhat alleviates the issue of having a very small amount
of data, because these images are roughly 10x larger than a
256x256 image which you will find in many other compute
vision tasks. Here is an example image/label pair from the
validation dataset.

Figure 1: Example validation image and label number 148.

We can see here that our labels consist of only green,
red, and black pixels, corresponding to stroma, cancer, and
background respectively.

4.2. Data Augmentation

Vision tasks such as this usually require large labeled
training sets, which as mentioned above, wasn’t available
for this specific task. The dataset was quite small with 158
image/label pairs. To try to alleviate this issue, a few data
augmentation techniques were applied to give more training
data. The one that was most promising and ended up being
used was mirroring the data. To augment the data set, each
training image and label was mirrored around both the x
and y axis. This provided three times as much training data
as we originally had, while still providing novel information
because the kernels move left to right and top to bottom.

Other data augmentation techniques that were promis-
ing but would have required more time to explore fully are
adding Gaussian noise to each image while leaving the la-
bels unchanged, and tiling the images. Gaussian noise has
the attempt to make the classifiers more robust, because
small noise should not change the output from the classifier.
Tiling the images allows the network to operate on smaller,

more local inputs, and can aid in computational efficiency
as well. Again, these other techniques were not explored in
full but are likely to have positive effects on the efficacy of
the final classifier.

4.3. Evaluation

The chosen evaluation metric will be some loss mea-
sured between the labeled images, and the models predic-
tions. Two different types of evaluations were explored in
this paper. The first was both L1 and L2 norms of the dif-
ference in output image from the model and correspond-
ing label. Note different combinations of L1 and L2 norm
were tried, and discussed later down in the results section,
but here is the general formulation of loss using L1 and L2
norm:

L =
1

N

N∑
i=1

(λ1L1i + λ2L2i)

Where L1i and L2i are:

L1i = ‖yi − ŷi‖1

L2i = ‖yi − ŷi‖2
Where yi is the true label, and ŷi is the predicted image.

We take a combination of the L1 and L2 norm between
the target and predicted image, and then average across all
images to get a single scalar loss value.

The other evaluation metric used was softmax cross en-
tropy loss. Our output image has three channels, one cor-
responding to each of the three classes: cancer, stroma,
or background. If we frame the task as a classification at
each pixel, it makes sense to take the softmax cross en-
tropy loss between every pixels probability distribution, and
the ground truth distribution from the corresponding labeled
image. These pixel-wise losses are then averaged to give a
scalar loss per image, and these again are averaged to get
a scalar loss for the entire train, validation, or test set. The
full form of the softmax loss for this task looks as follows:

L =
1

N

N∑
i=1

1

P

P∑
j=1

3∑
k=1

pjk log(p̂jk)

Where N is the total number of examples in the data set
we are looking at, and P is the total number of pixels in
one of the images. Here, pj represents the true probability
distribution over the 3 classes for the j-th pixel, and p̂j rep-
resents the predicted distribution for the same pixel j. This
formulation simplifies slightly because out target distribu-
tions are all one hot. It can be rewritten as follows:

L =
1

N

N∑
i=1

1

P

P∑
j=1

log(p̂jk)
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Here, k represents the index of the true label for pixel j.
Overall, these two different evaluation methods were used,
and results are discussed below.

5. Approach
5.1. Overview

The network used in this paper is built on two main ideas.
The first is transfer learning. Several layers from VGG16
[2] were used as the building blocks for the rest of the net-
work. The second idea is more specific to semantic seg-
mentation, which is the transpose convolutional layer. This
layer is used to upsample the spatial dimensions of the im-
age in a learnable way, as opposed to upsampling via other
methods like pooling. With these two ideas put together, all
the experimented models look similar. The images are first
passed through a number of the VGG16 layers, where the
spatial resolution shrinks as the volumes get further into the
network. Then, these volumes are passed through a series of
transpose convolutional layers and convolutional layers to
upsample the spatial resolution back to the same size as the
initial image, and to provide the model with the expressivity
required to perform well on a task like semantic segmenta-
tion. A few different model architectures from various ex-
periments are discussed below. Note, ReLu nonlinearities
were used after each convolutional and transpose convolu-
tional layer, but are omitted in the figures for brevity.

5.2. Architecture

Figure 2 in the appendix is a figure of the VGG16
architecture for reference. The purple block at the bottom
is what was used as the transfer learning component to
most of the models I experimented with. This means that
the images were fed through VGG16 until right before the
second pooling layer, and then extracted to build on top of.
The future diagrams will contain the same purple block for
clarity.

5.2.1 Experiment 1

The first experiment was run with the model architecture in
Figure 3 in the appendix. The red layers are, as introduced
previously, the transpose convolutional layers. In the case
of experiment one, because the VGG layers only pooled
once, the inputs to the transpose convolutional layer are ex-
actly have the spatial dimensions of the original image, or
564x360. These are upsampled with 128 filters to get back a
volume of dimensions 1128x720x128 which is then passed
through several more convolutional layers until we get an
output of size 1128x720x3 from which we take our loss di-
rectly. Large kernel sizes (11x11 and 9x9) were used in the
first experiment to try to increase the receptive field. This

was done because it is often useful to have a slightly larger
perspective about the cells the kernel is passing over and
what large groups within the image they belong to.

5.2.2 Experiment 2

The architecture for experiment two can be found in Fig-
ure 4 in the appendix. Experiment two looks quite similar
to experiment one, but with kernel sizes slightly different.
This was done in attempt to have a smoother transition from
large to small kernel sizes while still maintaining the rela-
tively large receptive field.

5.2.3 Experiment 3

The architecture for experiment three can be found in Figure
5 in the appendix. Experiment three modified the existing
architecture in a few ways. One was the decrease in kernel
size, so that all filters are 3x3. It was shown in the context
of ResNet [3] that stacking smaller 3x3 filters can have the
same effective receptive field as one larger 7x7 filter for ex-
ample. The other change is the deeper channel depth. This
was done to give the model a bit more expressive power to
capture some of the more intricate features of the task space.

5.2.4 Final Architecture

Finally, the model architecture in Figure 6 was arrived at
with a few more modifications. The deeper channel depth
and smaller filter sizes have been retained, but there are two
noteworthy changes. First, the VGG layers extracted now
include one more pooling layer and two more convolutional
layers. As a result of this, the volume coming from the VGG
layers now has spatial dimensions one fourth of the original
image size, or 282x180. In order to end up with images
of the same spatial resolution as the inputs, two transpose
convolutional layers must be used. Each transpose convolu-
tional layer upsamples by a factor of two, so we will recover
the dimensions needed for the loss metrics. These are the
main changes that were used in the final model architecture.

6. Experiments & Results

6.1. Quantitative Analysis

As mentioned earlier, several experiments were per-
formed with the different model architectures shown above.
Table 1 presents a comparison of the different models per-
formance using the softmax cross entropy loss function de-
scried above. Note that the loss values presented here are
loss values for the entire validation set. These experiments
were run with a small hyperparameter search for best re-
sults, and were trained for roughly 5-10 epochs, or until no
improvements were seen.
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Experiment Final Loss Value
One 0.849
Two 0.774
Three 0.748
Final experiment 0.697

Table 1. Comparison of loss values on validation set.

Dataset Final Loss Value
Training 0.563
Validation 0.697
Test 0.685

Table 2. Comparison of loss values on validation set.

On the final model, the following hyperparameters were
used: learning rate of 0.0001, batch size of 4, learning de-
cay rate of 0.96. The Adam optimizer was used for opti-
mization as well. Note that dropout along with standard L2
regularization were both implemented, but neither proved
very useful. Again this is likely due to the small dataset,
so any penalty on the model’s expressivity ended up hurt-
ing performance all around. A scenario with little to no
regularization on a small dataset is ripe for overfitting, but
the model architecture itself is not incredibly complex, so
the resulting gap between training error and validation/test
error is acceptable. Table 2 presents the final loss values
across the three datasets.

Looking at the final loss values, we see there is a gap
between training and validation/test, but it is not too large.
In addition, the validation loss and test loss are quite close,
which is promising and means the model is likely to gener-
alize to unseen examples well.

6.2. Qualitative Analysis

In addition to looking at the quantitative results of the
model in terms of loss values, it can also be useful to qual-
itatively analyze how the model performs and hypothesize
why it does well in some cases and not so well in others. To
do so, we can look at a few examples of training example,
training label, predicted label triplets and analyze where the
predicted label differs. Below are two examples of images
from the validation set.

Figure 7: Example predicted label for image number 148.

This first example corresponds to the validation images
and labels above in Figure 1. Referring back to the original
image and label above, we can see that this produces quite
reasonable results, with a few caveats. Overall, it seems to
capture the main areas that truly contain the cancer. By vi-
sual inspection, we can notice that this corresponds to the
darker purple spots in the original training image. The hu-
man visual system can quickly identify the pattern of darker,
denser spots as likely to contain cancer, and it seems the
convolutional neural network has done the same here. The
difference is that this image seems to be overall much nois-
ier. Looking back to the original image, it seems like the
network classifies many of the individual cell nuclei as can-
cerous, likely because they are also generally darker and
denser looking than the surrounding tissue. Here is a sec-
ond example of validation image and true label.

Figure 8: Example validation image and label number 154.

Looking at these two, it is quite difficult to visually sepa-
rate what apparently are the true cancerous regions from the
rest. The next figure contains the predicted model output.
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Figure 9: Example predicted label for image number 154.

We can see here many of the same qualities as we found
in the previous example. It generally identifies the broad
regions that are cancerous quite accurately, but the model
seems to have much more noise than the labels themselves.
Small groups, perhaps even individual pixels, seem to be
misclassified in otherwise continuous large blocks.

Perhaps the noise comes from the fact that we have a rel-
atively small dataset, and we are likely to end up overfitting
to very small intricacies like we are seeing here. Even with
regularization techniques, it is difficult to prevent overfitting
on such a small dataset.

It is also interesting to note some of the deficiencies or
shortcomings of the true labels themselves. In both exam-
ples here there are areas that are clearly part of the tissue
that have been classified in the true label as background.
Likely this is due to the fact that the process of hand gen-
erating these labels is expensive and tedious, and it is likely
human oversight to classify these as background. Take for
example the small green area in the center of Figure 9.
Looking at the corresponding image in Figure 8 from the
dataset, we see there is a small purple area there, yet again
it is classified as background in the true label, also found in
Figure 8.

Overall, it seem the model identifies quite well general
cancerous areas, but fails to have the very fine precision
and smoothness that the true labels do. This observation
prompts the idea of adding another loss term to help pro-
mote smoothness. Even a simple loss function that has
a small penalty for neighboring pixels differing, summed
across all pixels, would likely help with the issue here of
our predicted images not looking smooth. This idea, which
shares many similarities to conditional random fields, was
proposed in the context of semantic segmentation by Chen
et. al [11] in 2014. This has an intuitive biological explana-
tion as well. Cancer cells are likely to originate in one area
and grow outward, not spawn up randomly and individually
in many places. This is why we end up with one large tumor
as opposed to small groups of cancer cells scattered across
a large distance.

7. Conclusion
This paper aimed to build a semantic segmentation net-

work for a given histological image dataset taken from
Stanford Medical School. Overall, given the limitations
in dataset size and time constraints, the results are promis-
ing and likely there could be room for much improvement.
It is likely that the biggest limiting factor is dataset size.
Therefore, given more time, this would be the area of focus.
As discussed earlier, different Gaussian noise techniques
or tiling techniques could prove very beneficial. It is also
worth looking into augmenting the data with images from
entirely different datasets as well. The Cancer Genome At-
las has quite a lot of similar histological images, but unfor-
tunately no labels. It would be worth contacting the group
who organized this dataset to see if it would be possible to
obtain more high quality data.

Another next step would be to take this to a patholo-
gist with domain knowledge to analyze more qualitatively
where the model performs well and where it does not. This
might be helpful in determining the shortcomings of the
model, and could provide useful insights for designing new,
potentially better model architectures.
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9. Appendix

Figure 2: VGG16 Architecture

Figure 3: Experiment one network architecture

Figure 4: Experiment two network architecture

Figure 5: Experiment three network architecture

Figure 6: Final experiment network architecture
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